CS650 Reflectómetro contenido agua en suelo, temperatura, conductividad (SDI-12)
Innovadora
Mayor precisión en suelos con alta conductividad eléctrica
meteorología aplicaciones agua aplicaciones energía aplicaciones flujo gas y turbulencia aplicaciones infraestructuras aplicaciones suelo aplicaciones

Resumen

El CS650 es un sensor inteligente multiparamétrico que usa innovadoras técnicas para monitorizar el contenido de agua volumétrico, conductividad eléctrica y temperatura del suelo. La señal de salida es digital SDI-12, compatible con la mayoría de nuestros dataloggers.

Leer más

Ventajas y características

  • Medidas de contenido de agua más precisas en suelos con EC de hasta 3dSm-1 sin necesidad de una calibración específica del suelo
  • Un mayor volumen de la muestra reduce el error
  • Medida corregida para efectos de la textura del suelo y conductividad eléctrica
  • Estima el contenido de agua del suelo para una amplia gama de suelos minerales
  • Sensor versátil—mide la permitividad dieléctrica, conductividad eléctrica (EC), y temperatura del suelo

Imágenes

Descripción detallada

The CS650 consists of two 30-cm-long stainless steel rods connected to a printed circuit board. The circuit board is encapsulated in epoxy and a shielded cable is attached to the circuit board for datalogger connection.

The CS650 measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.

Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This loss-effect correction allows accurate water content measurements in soils with bulk EC ≤3 dS m-1 without performing a soil specific calibration.

Soil bulk electrical conductivity is also calculated from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content. Temperature measurement in other orientations will be that of the region near the rod entrance into the epoxy body.

 


Preguntas frecuentes

Número de FAQs relacionadas con CS650: 54

Expandir todoDesplegar todo

  1. The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.

  2. Modifications to the CS650 or CS655, including shortening the cable, will void the warranty. However, shortening the cable will not affect the sensor’s performance. If a decision is made to shorten the cable, care should be taken to avoid damaging the cable jacket and exposing bare wire except at the ends that connect to the data logger or multiplexer terminals.

  3. No. The equation used to determine volumetric water content in the firmware for the CS650 and the CS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not for organic soils. In organic soils, the standard equations in the firmware will overestimate water content.

    When using a CS650 or a CS655 in organic soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.

  4. The volumetric water content reading is the average water content over the length of the sensor’s rods.

  5. The CS650 has rods that are 30 cm long, and the CS655 has rods that are 12 cm long. The difference in rod length causes some changes in specifications. For example, the CS650 is slightly more accurate in its permittivity and water content readings, but the CS655 works over a larger range of electrical conductivity. In addition, the CS650 handles a larger measurement volume and provides good accuracy in low EC (electrical conductivity) sand and sandy loam. The CS655 is typically more accurate in soil, works well over a wide range of soil textures and EC, and is easier to install because of its shorter rods.

  6. Campbell Scientific does not recommend using the CS650 or the CS655 to measure water content in compost. A compost pile is a very hostile environment for making dielectric measurements with soil water content sensors. All of the following combine to make it very difficult to determine a calibration function: high temperature, high and varying electrical conductivity, high organic matter content, heterogeneity of the material in the pile, changing particle size, and changing bulk density. The temperature and electrical conductivity values reported by the CS650 or CS655 may give some useful information about processes occurring in the compost pile, but these sensors will not be able to give useful readings for water content.  

  7. Yes. Keeping the sensor rods parallel during installation is especially difficult in gravel, but it can be done. Gravel has large pore spaces that drain quickly, so the water content readings will likely show rapid changes between saturation and very dry. If small changes of water content at the dry end are of interest, a soil-specific calibration may need to be performed to convert period average directly to volumetric water content.

  8. No. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. Gasoline and other hydrocarbons have dielectric permittivities in the same range as soil particles, which essentially make them invisible to the CS650 and the CS655. 

  9. The CS650 and the CS655 are not ideal sensors for measuring water level. However, these sensors do respond to the abrupt change in permittivity at the air/water interface. A calibration could be performed to relate the period average or permittivity reading to the distance along the sensor rods where the air/water interface is located. From that, the water level can be determined. The permittivity of water is temperature dependent, so a temperature correction would be needed to acquire accurate results.  

  10. No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil. 

    For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.


Especificaciones

Measurements Made Soil electrical conductivity (EC), relative dielectric permittivity, volumetric water content (VWC), soil temperature
Required Equipment Measurement system
Soil Suitability Long rods with large sensing volume (> 6 L) are suitable for soils with low to moderate electrical conductivity.
Rods Not replaceable
Sensors Not interchangeable
Sensing Volume 7800 cm3 (~7.5 cm radius around each probe rod and 4.5 cm beyond the end of the rods)
Electromagnetic CE compliant
Meets EN61326 requirements for protection against electrostatic discharge and surge.
Operating Temperature Range -50° to +70°C
Sensor Output SDI-12; serial RS-232
Warm-up Time 3 s
Measurement Time 3 ms to measure; 600 ms to complete SDI-12 command
Power Supply Requirements 6 to 18 Vdc (Must be able to supply 45 mA @ 12 Vdc.)
Maximum Cable Length 610 m (2000 ft) combined length for up to 25 sensors connected to the same data logger control port
Rod Spacing 32 mm (1.3 in.)
Ingress Protection Rating IP68
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 300 mm (11.8 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Probe Weight 280 g (9.9 oz) without cable

Current Drain

Active (3 ms)
  • 45 mA typical (@ 12 Vdc)
  • 80 mA (@ 6 Vdc)
  • 35 mA (@ 18 Vdc)
Quiescent 135 µA typical (@ 12 Vdc)

Electrical Conductivity

Range for Solution EC 0 to 3 dS/m
Range for Bulk EC 0 to 3 dS/m
Accuracy ±(5% of reading + 0.05 dS/m)
Precision 0.5% of BEC

Relative Dielectric Permittivity

Range 1 to 81
Accuracy
  • ±(2% of reading + 0.6) from 1 to 40 for solution EC ≤ 3 dS/m
  • ±1.4 (from 40 to 81 for solution EC ≤1 dS/m)
Precision < 0.02

Volumetric Water Content

Range 0 to 100% (with M4 command)
Water Content Accuracy
  • ±1% (with soil-specific calibration)
  • ±3% (typical with factory VWC model) where solution EC < 3 dS/m
Precision < 0.05%

Soil Temperature

Range -50° to +70°C
Resolution 0.001°C
Accuracy
  • ±0.1°C (for typical soil temperatures [0 to 40°C] when probe body is buried in soil)
  • ±0.5°C (for full temperature range)
Precision ±0.02°C

Compatibilidad

Nota: lo siguiente muestra información de compatibilidad notable. No es una lista de todos los productos compatibles.

Dataloggers

Producto Compatible Nota
CR1000 (retired)
CR1000X
CR300 (retired)
CR3000 (retired)
CR310
CR350
CR6
CR800 (retired)
CR850 (retired)

Información de compatibilidad adicional

RF Considerations

External RF Sources

External RF sources can affect the probe’s operation. Therefore, the probe should be located away from significant sources of RF such as ac power lines and motors.

Interprobe Interference

Multiple CS650 sensors can be installed within 4 inches of each other when using the standard datalogger SDI-12 “M” command. The SDI-12 “M” command allows only one probe to be enabled at a time.

Installation Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G were not used. It makes pilot holes into which the rods of the sensors can then be inserted.

Casos de aplicación

Florida: Road-Base Monitoring
Everglades National Park is the largest tropical wilderness in the United States and was created......leer más
France: Dynamic Agrivoltaism
Agrivoltaics or dual-use solar is a system combining an agricultural crop (viticulture, arboriculture, field crops,......leer más
France: Dynamic Agrivoltaism
Agrivoltaics or dual-use solar is a system combining an agricultural crop (viticulture, arboriculture, field crops,......leer más

Artículos y notas de prensa